翟青,高玉洁,魏宗财.基于DBSCAN的南京商业空间聚类研究[J].南京邮电大学学报(社会科学版),2022,(03):82~92 |
基于DBSCAN的南京商业空间聚类研究 |
Spatial clustering analysis of commercial centers in Nanjing based on DBSCAN |
|
DOI: |
中文关键词: 商业空间 空间集聚 集群识别 DBSCAN算法 南京 |
英文关键词:commercial space spatial agglomeration cluster identification DBSCAN algorithm Nanjing |
基金项目:国家自然科学基金“城市居民网络在线活动对城市空间的影响机理及其效应研究”(41571146) |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
以南京市餐饮和购物为例,采用DBSCAN算法探究南京商业空间聚类特征,再采用空间形态指标定量分析餐饮集群与购物集群的形态特征。研究发现:南京商业空间集聚特征显著,呈圈层式空间结构和“一主多中心”等级体系,空间分布仍遵循中心地理论;餐饮集群、购物集群的识别精细反映了商业中心之间的功能、等级、规模、形态差异;高等级集群以高集中度、高密度、高紧凑率、低延伸度的团块状空间形态为主,低等级集群以低集中度、低密度、低紧凑率、高延伸度的线状、点状空间形态为主。研究有助于城市商业网点的合理规划与布局,为城市管理者制定商业发展政策提供科学依据。 |
英文摘要: |
Taking catering and shopping in Nanjing as an example, the DBSCAN algorithm is used to explore the spatial clustering characteristics of Nanjing commerce, and then the spatial morphological indicators are used to quantitatively analyze the morphological characteristics of catering and shopping clusters. It is found that the commercial space in Nanjing has obvious agglomeration characteristics, showing a circular spatial structure and a “one central point and multi-points” hierarchical system, and the spatial distribution still follows the central place theory. The identification of catering cluster and shopping cluster reflects the differences in function, level, scale and form between business centers. The high-level cluster is mainly in the form of block space with high concentration, high density, high compactness and low extension, while the low-level cluster is mainly in the form of linear and point space with low concentration, low density, low compactness and high extension. The research is conducive to the rational planning and layout of urban commercial network, and provides a scientific basis for urban managers to formulate commercial development policies. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |